7 research outputs found

    Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program

    Get PDF
    Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset

    Whole blood transcript and protein abundance of the vascular endothelial growth factor family relate to cognitive performance

    Get PDF
    The vascular endothelial growth factor (VEGF) family of genes has been implicated in the clinical development of Alzheimer's Disease (AD). A previous study identified associations between gene expression of VEGF family members in the prefrontal cortex and cognitive performance and AD pathology. This study explored if those associations were also observed in the blood. Consistent with previous observations in brain tissue, higher blood gene expression of placental growth factor (PGF) was associated with a faster rate of memory decline (p=0.04). Higher protein abundance of FMS-related receptor tyrosine kinase 4 (FLT4) in blood was associated with biomarker levels indicative of lower amyloid and tau pathology, opposite the direction observed in brain. Also, higher gene expression of VEGFB in blood was associated with better baseline memory (p=0.008). Notably, we observed that higher gene expression of VEGFB in blood was associated with lower expression of VEGFB in the brain (r=-0.19, p=0.02). Together, these results suggest that the VEGFB, FLT4, and PGF alterations in the AD brain may be detectable in the blood compartment

    A current perspective on using R and Bioconductor for proteomics data analysis

    No full text
    <p>The R statistical environment and programming language is a key player in many domains that require robust data analysis. The Bioconductor project offer a wide range of R packages dedicated to the analysis and comprehension of high throughput biology. Originally focused on genomics, Bioconductor is gaining increasing attention in the proteomics, metabolomics and mass spectrometry communities, as reflected by the download statistics and package contributions.</p

    Neuropathological correlates and genetic architecture of microglial activation in elderly human brain

    Get PDF
    The consequences of microglial activation in the aging human brain remain unknown. This study quantified microglial morphology and density in the elderly human brain to show that cortical microglial activation strongly associates with AD pathogenesis and may be an upstream contributor to cognitive decline via the accumulation of tau pathology

    The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.

    No full text
    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ)-based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium vs sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi
    corecore